<Gate Drive Unit>

VLB519-01R

ISAHAVA ELECTRONICS

PRELIMINARY

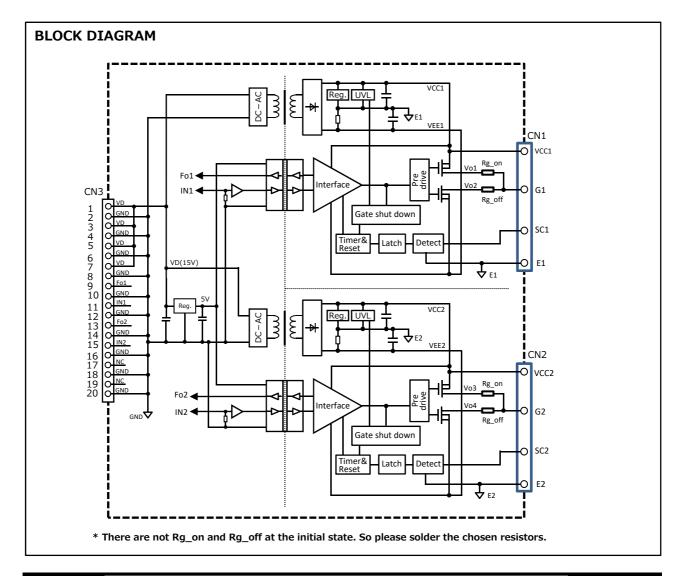
DRIVER FOR SIC-MOSFET MODULES

VLB519-01R

FEATURES

- >Dual channel simple and easy gate drive system >Short circuit detection for RTC signal of MOSFET module
- >Built in short circuit protection (2step turn off with RTC) >Built in the isolated DC-DC converter for gate drive
- >Wire connection to MOSFET module
- >Output gate peak current is +/-30A(max)
 >Electrical isolation voltage is 4000Vrms (for 1 minute)

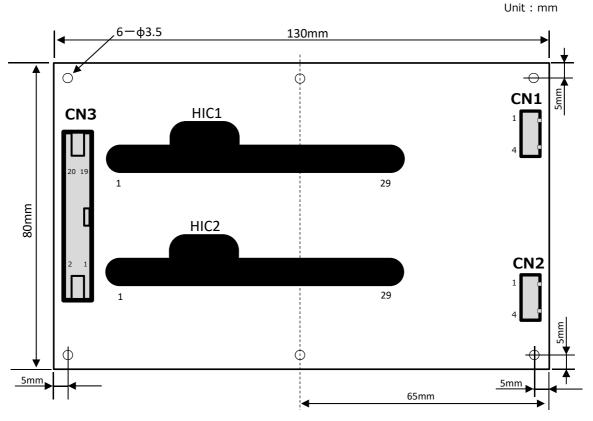
TARGETED SIC-MOSFET MODULES


SiC-MOSFET built in RTC by Mitsubishi Electric FMF600DXZ-24B FMF400BXZ-24B FMF400BX-24B FMF300BXZ-24B FMF300DXZ-34B etc. *Under development

APPLICATIONS

HF converter, Power supply, Inverter etc.

Built in core HIC(VLB518-01R)



ISAHAYA ELECTRONICS

PRELIMINARY

DRIVER FOR SIC-MOSFET MODULES

OUTLINE

DETAILS OF CONNCETORS

CN1: B4B-XH-A (JST)		
Pin No. Pin name		
1	Vcc1	
2	SC1	
3	G1	
4	E1	

CN2: B4B-XH-A (JST)	
Pin No. Pin name	
1	E2
2	G2
3	SC2
4	Vcc2

CN3:3428-6002LCPL			
Pin No.	Pin name		
1	VD		
2	GND		
3	VD		
4	GND		
5	VD		
6	GND		
7	VD		
8	GND		
9	Fo1		
10	GND		
11	IN1		
12	GND		
13	Fo2		
14	GND		
15	IN2		
16	GND		
17	NC		
18	GND		
19	NC		
20	GND		

We recommend following parts or equivalent product for wire cable of CN1,2

HOUSING	TERMINAL	Maker
XHP-4	SXH-001T-P0.6	JST

PRELIMINARY

VLB519-01R

DRIVER FOR SIC-MOSFET MODULES

MAXIMUM RATINGS

(unless otherwise noted, Ta=25 $^{\circ}{\rm C})$

Symbol	Item	Conditions	Ratings	Unit
VD	Supply voltage	Between VD and GND	16.5	V
VI	Input signal voltage	Applied between IN1,2-GND	19	V
I_Fo	Fo output current	Sink and source current of Fo terminal	+/-10	mA
IOHP		Dulas width Dus	-30	А
IOLP	Output gate peak current	Pulse width 2us	30	А
Viso1	Isolation voltage between primary and secondary	Sine wave voltage 60Hz, for 1min	4000	Vrms
Viso2	Isolation voltage between each output	Sine wave voltage 60Hz, for 1min	4000	Vrms
Тс	Case temperature	Surface temperature of output power MOSFET in HIC	110	deg C
Topr	Operating temperature	No condensation allowable	-25 ~ 85	deg C
Tstg	Storage temperature	No condensation allowable	-25 ~ 85	deg C
Idrive	Gate drive current	Gate average current per one circuit	150	mA

ELECTRICAL CHARACTERISTICS (unless otherwise noted, Ta=25°C, VD=15V, Rg_on=Rg_off=1.5Ω, f=20kHz)

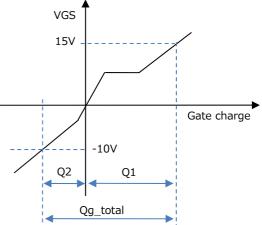
Symbol Item Condit	Itom	Conditions	Limits			Unit
	Conditions	Min	Тур	Max	Unit	
VD	Supply voltage	Recommended range	14.5	15	15.5	V
f	Switching frequency	Recommended range It is limited by maximum gate average current	-	-	50	kHz
RG	Gate resistance	Recommended range (Total compound value)	0.5	-	-	Ω
Qg_total	Total gate charge	Recommended range Driven total gate charge of connected module	-	-	8	uC
VI	Input signal voltage	Recommended range	4.5	-	15.5	V
I_Fo	Fo output current	Recommended range	-4	-	4	mA
VCC	VCC voltage	-	13.5	15	16	V
VI_H	Input signal high threshold	-	1.5	1.8	2.1	V
VI_L	Input signal low threshold	-	0.8	1.1	1.4	V
VOH	Plus bias output voltage	Input "H" (High active)	13.5	15	16	V
VOL	Minus bias output voltage	Input "L"	-8	-10	-13	V
tPLH	"L-H" propagation time	Rg=1.5Ω, f=20kHz, C_load:0.15uF, VI=5V	0.2	0.35	0.6	us
tPHL	"H-L" propagation time	Rg=1.5Ω, f=20kHz, C_load:0.15uF, VI=5V	0.15	0.3	0.55	us
Ttimer	Timer	Between start and cancel of protection (Under input signal is off state)	1	-	2	ms
td_SCoff	Output turn off delay after RTC signal	From receiving RTC signal to start of G1,2 descent	-	1.3	2.5	us
ttrip	Masked time detect short circuit	From receiving RTC signal to start of Fo1,2 descent	-	0.9	2	us
VSCth	SC detection threshold	Applied between SC1,2 and E1,2	4.8	5.6	6.2	V
UVLO+_VCC	Under voltage lock out (Operation start)	VCC voltage	-	12.6	-	V
UVLOVCC	Under voltage lock out (Operation stop)	VCC voltage	-	11.7	-	V

<Gate Drive Unit>

VLB519-01R

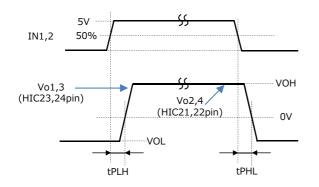
DRIVER FOR SiC-MOSFET MODULES

Gate charge characteristic of MOSFET


CALCULATION FOR GATE DRIVE CURRENT (GATE AVERAGE CURRENT)

PRELIMINARY

This product has isolated DCDC converter built in for gate drive. The maximum output current rating of this DCDC converter is Idrive(max) And this current means maximum gate average current. **When you decide the switching frequency, please check the gate average current by next formula.**


- Q1 : Gate charge at +15V (Read from data sheet of MOSFET)
- Q2 : Gate charge at -10V (Read from data sheet of MOSFET)
- f : Switching frequency of module

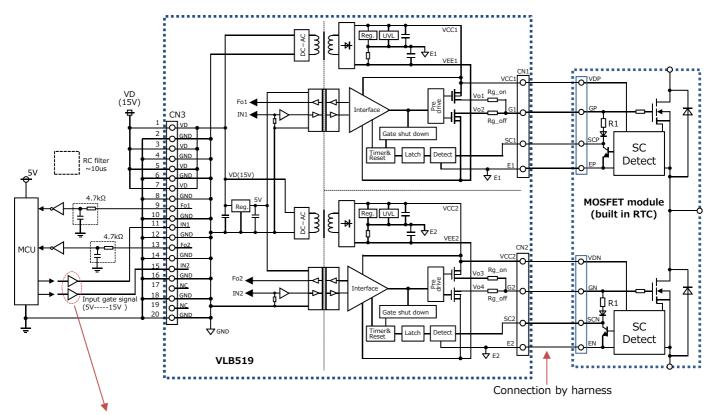
ELECTRONICS

DEFINITION OF CHARACTERISTICS

NORMAL SWITCHING OPERATION

*Test condition : Rg_on=Rg_off=1.5 Ω , C_load=0.15uF f=20kHz, ON Duty=50%

OPERATION OF SHORT CIRCUIT PROTECTION



ISAHAYA ELECTRONICS

PRELIMINARY

DRIVER FOR SIC-MOSFET MODULES

APPLICATION EXAMPLE

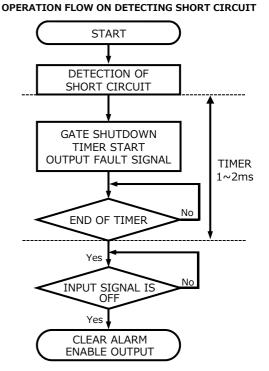
*About the IC which drives gate signal on input side, it is not recommended to use the one whose output is open collector or open drain type.

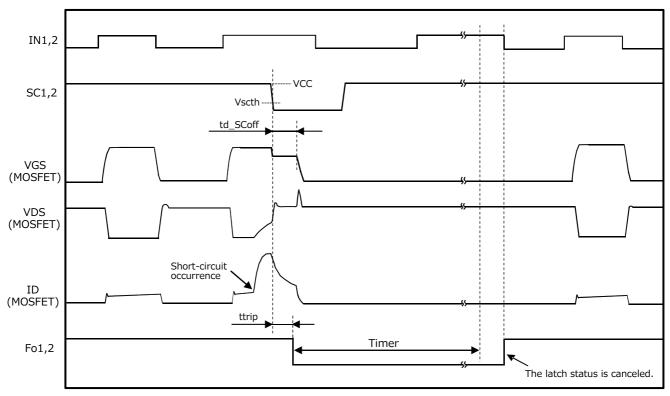
Other notes

- 1) Rg_on and Rg_off are not installed at the time of shipment. Please solder the chosen resistors.
- 2) In functional checks, if you want to leave the short circuit detection circuit unused in VLB519, leave the terminal of SC1,2 open. At that time, the connection of VCC1 and VCC2 to the module is necessary. However, during actual operation, this approach is dangerous and is not recommended.
- 3) CN1, CN2 and P-side, N-side correspondence can be swapped.
- 4) Please design the wiring pattern so that the area surrounded by the input gate signal line becomes as small as possible to minimize the effect of electromagnetic induction noise.
- 5) Gate and source wiring is recommended to be twisted pair.
- 6) Targeted length of the harness to MOSFET module is Less than 15cm. However, if gate oscillation needs to be suppressed, it should be made even shorter.

PRELIMINARY

DRIVER FOR SIC-MOSFET MODULES


OPERATION OF PROTECTION CIRCUIT


- In case the input gate signal is "ON" and the SC terminal voltage of MOSFET module is "L" level, this drive unit will recognize the main circuit as short circuit and reduce the gate voltage. Besides, put out fault signal ("L") which inform that protection circuit is operating at the same time from Fo terminal (9or13 pin of CN3).
- (2) The protection circuit reset and resort to ordinary condition if input gate signal is "OFF" when the premised 1~2msec passed.
 ("OFF" period needs 10us or more)

LATCH & TIMER RESET SYSTEM IN SHORT CIRCUIT PROTECTION CIRCUIT

Once the short-circuit protection circuit starts, it shuts down the gate output and keeps alarm output, causing the latch status. This status is canceled if the input signal is OFF when specific time elapses after the activation of the short-circuit protection circuit. Then, gate output depending on input signals becomes possible. If the input signal is ON when specific time elapses, the latch status is not canceled: it is canceled when the signal becomes OFF.

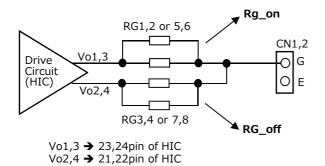
As mentioned above, on the latch & timer reset system, the latch status is resulted after activation of the protection circuit and shutdown of the gate output. Therefore, during this period, gate output is not made no matter how much input signals are received. For this reason, it is possible to safely stop the entire equipment by sending error signals to the microcomputer during this period to stop all gate signals.

TIMING CHART

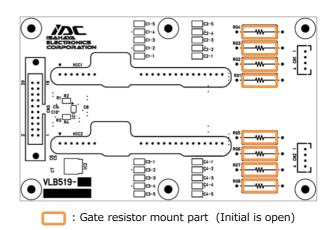
PRELIMINARY

DRIVER FOR SIC-MOSFET MODULES

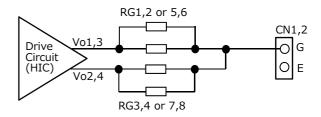
ABOUT MOUNTING GATE RESISTORS

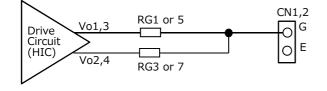

There is not gate resistors on this unit at the initial state.

It is possible to install up to 4 resistors in mount area of gate resistors per one channel.

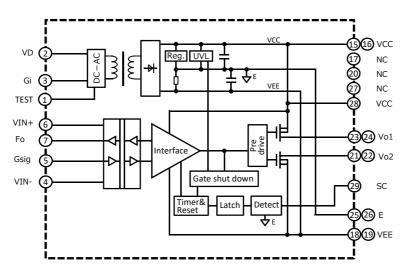

And there are some variations by combining resistors.

There are some examples in the following chart, please refer to it and set the gate resistors.


And please solder the chosen resistors.



Example 2


Rg_on \rightarrow RG1//RG2 or RG5//RG6 Rg_off \rightarrow RG3//RG4 or RG7//RG8

Rg_on \rightarrow RG1 or 5 Rg_off \rightarrow RG3 or 7



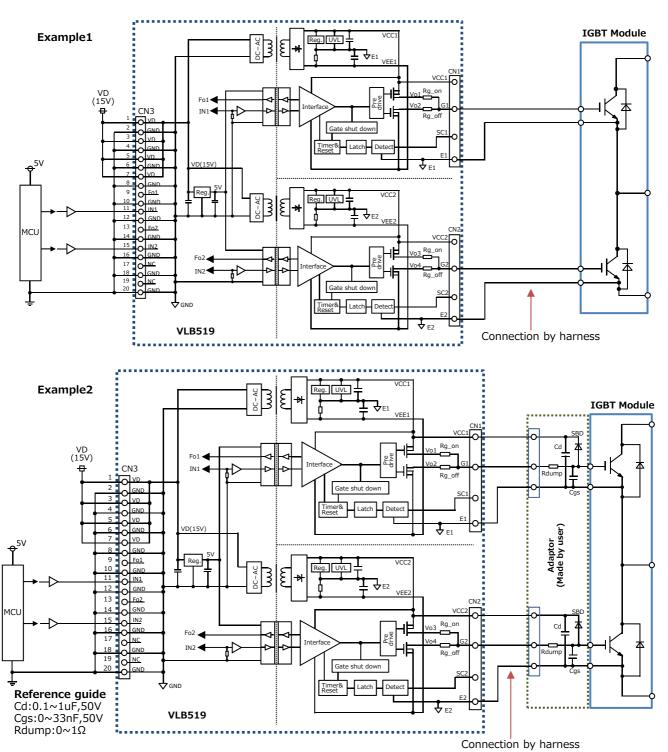
DRIVER FOR SIC-MOSFET MODULES

PRELIMINARY

APPLICATION EXAMPLE FOR USE WITH MOSFET MODULES WITHOUT BUILT-IN RTC CIRCUIT *MOSFET example : FMF400BX-24B

Notes

- 1) About the IC which drives gate signal on input side, it is not recommended to use the one whose output is open collector or open drain type.
- 2) Rg_on and Rg_off are not installed at the time of shipment. Please solder the chosen resistors.
- 3) The built-in short-circuit protection circuit does not work in this application example.
- 4) CN1, CN2 and P-side, N-side correspondence can be swapped.
- 5) Please design the wiring pattern so that the area surrounded by the input gate signal line becomes as small as possible to minimize the effect of electromagnetic induction noise.
- 6) Gate and source wiring is recommended to be twisted pair.
- 7) Targeted length of the harness to MOSFET module is Less than 15cm.
- However, if gate oscillation needs to be suppressed, it should be made even shorter.



PRELIMINARY

DRIVER FOR SIC-MOSFET MODULES

APPLICATION EXAMPLE FOR USE WITH IGBT MODULES

This gate drive unit can also be used to drive IGBT modules. Please refer to the figure below.

Notes

1) About the IC which drives gate signal on input side, it is not recommended to use the one whose output is open collector or open drain type.

2) Rg_on and Rg_off are not installed at the time of shipment. Please solder the chosen resistors.

- 3) The built-in short-circuit protection circuit does not work in this application example.
- 4) CN1, CN2 and P-side, N-side correspondence can be swapped.
- 5) Please design the wiring pattern so that the area surrounded by the input gate signal line becomes as small as possible to minimize the effect of electromagnetic induction noise.
- 6) Gate and emitter wiring is recommended to be twisted pair.

PRELIMINARY

DRIVER FOR SIC-MOSFET MODULES

FOR SAFETY USING

Great detail and careful attention are given to the production activity of Hics, such as the development, the quality of production, and in it's reliability. However the reliability of Hics depends not only on their own factors but also in their condition of usage. When handling Hics, please note the following cautions.

	CAUTIONS
Packing	The materials used in packing Hics can only withstand normal external conditions. When exposed to outside shocks, rain and certain environmental contaminators, the packing materials will deteriorates. Please take care in handling.
Carrying	 Don't stack boxes too high. Avoid placing heavy materials on boxes. Boxes must be positioned correctly during transportation to avoid breakage. Don't throw or drop boxes. Keep boxes dry. Avoid rain or snow. Minimal vibration and shock during transportation is desirable.
Storage	 When storing Hics, please observe the following notices or possible deterioration of their electrical characteristics, risk of solder ability, and external damage may occur. 1) Devices must be stored where fluctuation of temperature and humidity is minimal, and must not be exposed to direct sunlight. Store at the normal temperature of 5 to 30 degrees Celsius with humidity at 40 to 60%. 2) Avoid locations where corrosive gasses are generated or where much dust accumulates. 3) Storage cases must be static proof. 4) Avoid putting weight on boxes.
Extended storage	When extended storage is necessary, Hics must be kept non-processed. When using Hics which have been stored for more than one year or under severe conditions, be sure to check that the exterior is free from flaw and other damages.
Maximum ratings	To prevent any electrical damages, use Hics within the maximum ratings. The temperature, current, voltage, etc. must not exceed these conditions.
Polarity	To protect Hics from destruction and deterioration due to wrong insertion, make sure of polarity in inserting leads into the board holes, conforming to the external view for the terminal arrangement.

DRIVER FOR SIC-MOSFET MODULES

Keep safety first in your circuit designs!

·ISAHAYA Electronics Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (1) placement of substitutive, auxiliary circuits, (2) use of non-flammable material or (3) prevention against any malfunction or mishap.

Notes regarding these materials

•These materials are intended as a reference to our customers in the selection of the ISAHAYA products best suited to the customer's application; they don't convey any license under any intellectual property rights, or any other rights, belonging to ISAHAYA or a third party.

·ISAHAYA Electronics Corporation assumes no responsibility for any damage, or infringement of any third party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

-All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by ISAHAYA Electronics Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact ISAHAYA Electronics Corporation or an authorized ISAHAYA products distributor for the latest product information before purchasing product listed herein. ·ISAHAYA Electronics Corporation products are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact ISAHAYA Electronics Corporation or an authorized ISAHAYA products distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

•The prior written approval of ISAHAYA Electronics Corporation is necessary to reprint or reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

•Please contact ISAHAYA Electronics Corporation or authorized ISAHAYA products distributor for further details on these materials or the products contained therein.